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A B S T R A C T

Screening is an important step of experimental design. It aims to identify a few active factors,
among a large number of potential factors. In this paper, we propose two classes of mixed-
level screening designs with desirable design properties; such as, low correlations between
any two design columns, high design efficiencies (e.g., D- or A-efficiencies), and orthogonality
between main effects and two-factor interactions. Conference matrices with skew-symmetric
structure play an important role in the proposed construction. Two new construction methods
for conference matrices with skew-symmetric structure, recursive and algebraic constructions,
are provided. It is shown that the proposed mixed-level screening designs have all desirable
design properties and do not require any computer search.

1. Introduction

Screening design aims to identify active factors from a large number of potential factors and is popularly used in industrial
research; such as, bio-medical engineering, drug discovery (Dean and Lewis, 2006). Some machine learning algorithms also involve
the issue of identifying active factors by fractional factorial designs (Rodrigues et al., 2021). For cost-saving, the run size of screening
design is typically small. Conventionally, two-level fractional factorial designs with resolutions III (or IV) have been widely used
for screening. However, designs of resolution III have their main effects and some two-factor interactions fully confounded, while
designs of resolution IV (or higher) are rather expensive in terms of run size. Moreover, two-level design is not able to capture any
curvature or any active pure-quadratic effects that may exist in the underlying true model.

Jones and Nachtsheim (2011) proposed a new class of three-level screening design, called definitive screening design, which
provides the estimates of main effects that are unbiased by all second-order effects, and takes only twice as many runs of factors
plus one. Numerical constructions on definitive screening designs have been studied in Jones and Nachtsheim (2011), Nguyen and
Stylianou (2013) and Schoen et al. (2022). Xiao et al. (2012) provided a systematic construction of definitive screening designs using
conference matrices. Moreover, Phoa and Lin (2015) proposed a theoretically driven approach to construct definitive screening
designs. Blocking of definitive screening designs has also received widespread attention; see Jones and Nachtsheim (2016), Lin
(2015) and Wang et al. (2016). Conference matrices play a prominent role in the construction of definitive screening designs. It is
noteworthy that conference matrices can be substituted with alternative matrices, such as weight matrices; see Alhelali et al. (2020)
and Georgiou et al. (2014). Moreover, definitive screening designs have other theoretical studies; see Liu et al. (2023), Schoen et al.
(2019), and Wang et al. (2022).

The definitive screening designs by Jones and Nachtsheim (2011), however, can only accommodate three-level factors, although
two-level categorical factors are rather common for screening problems. Jones and Nachtsheim (2013) presented a new type of design
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including both two- and three-level factors, referred to mixed-level screening designs. The mixed-level screening designs proposed
in Jones and Nachtsheim (2013) are generated by a searching algorithm to convert some three-level columns of a conference matrix
to two-level columns under the D-optimal criterion. This algorithm requires the evaluation of the determinants of 22𝑚2 information

atrices (where 𝑚2 is the number of two-level factors). Hence, this procedure will lead to a large amount of evaluation and typically
btain an inefficient design. Furthermore, the absolute correlation between any pair of two-level design columns of Jones and
achtsheim (2013)’s designs may fail to reach the lower bound (see Proposition 1 below), and the correlation between two pure-
uadratic effect columns is 1∕2 − 1∕(𝑚 − 1), where 𝑚 is the run size of the conference matrix (this value tends to 1∕2 as run size
ends to large).

To overcome the limitations of existing designs, two classes of mixed-level screening designs are proposed here (without using
ny computer search), called Type I and Type II designs. Compared with the designs found by Jones and Nachtsheim (2013), the
roposed designs have the same first-order design efficiencies (see Table A.1) and other desired theoretical properties. The proposed
esigns match with the optimal designs found by Jones and Nachtsheim (2013), when 𝑚 is small. Moreover, the correlation between
wo pure-quadratic effects of Type II is in the order 𝑂(1∕𝑚) (tends to 0 as run size tends to infinity). For large 𝑚2, the searching
lgorithm of Jones and Nachtsheim (2013) may not be feasible, because it needs to calculate determinants of all 22𝑚2 information
atrices.

This paper is organized as follows. Section 2 reviews some preliminaries, including the construction method of Jones and
achtsheim (2013). Section 3 provides a new class of conference matrices. Two types of mixed-level screening designs with
igh D- and A-efficiencies are generated by these conference matrices. Theoretical properties of the proposed designs are then
iscussed. Section 4 provides further results on the construction of skew-symmetric conference matrices and some discussions. All
upplementary materials (including required tables and proofs) are provided in Appendix.

. Preliminaries

Assume that the response follows the second-order model,

𝑦 = 𝛽0 +
𝑚2+𝑚3
∑

𝑖=1
𝛽𝑖𝑥𝑖 +

𝑚2+𝑚3−1
∑

𝑖=1

𝑚2+𝑚3
∑

𝑗=𝑖+1
𝛽𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑚3
∑

𝑖=1
𝛽𝑖𝑖𝑥

2
𝑖 + 𝜖, (1)

here 𝑦 is the response variable; 𝑥1, 𝑥2,… , 𝑥𝑚3
are three-level factors; 𝑥𝑚3+1, 𝑥𝑚3+2,… , 𝑥𝑚3+𝑚2

are two-level factors; and 𝑥𝑖𝑥𝑗 and 𝑥2𝑖
re the interactions of factors and the pure-quadratic effects of three-level factors, respectively. 𝛽𝑖, 𝛽𝑖𝑗 and 𝛽𝑖𝑖 denote the unknown
onstant coefficients, and 𝜖 is the random error with zero mean and a finite variance 𝜎2. Our primary concern is screening, so we
ssume that the experimenter initially fits the (reduced) first-order model to the response, which can be written as

𝑦 = 𝛽0 +
𝑚2+𝑚3
∑

𝑖=1
𝛽𝑖𝑥𝑖 + 𝜖. (2)

As previously mentioned, to ensure the orthogonality between main effects and two-factor interactions, fractional factorial
esigns with resolutions of at least IV are required. This involves a substantial large number of experimental runs. Hence, we utilize
onference matrices and fold-over structures to construct screening designs, aiming to save resources and costs. We call a matrix
= (𝑐𝑖𝑗 )𝑚×𝑚 a conference matrix if it satisfies 𝐶 ′𝐶 = (𝑚 − 1)𝐼𝑚, with 𝑐𝑖𝑖 = 0 (𝑖 = 1, 2,… , 𝑚), and 𝑐𝑖𝑗 ∈ {−1, 1} (𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2,… , 𝑚),
here 𝐼𝑚 is an identity matrix of order 𝑚 (Xiao et al., 2012). Further, we call 𝐶 skew-symmetric if 𝐶 ′ = −𝐶. The construction of
ixed-level screening design by Jones and Nachtsheim (2013) with 𝑛 = 2𝑚+2 runs involving 𝑚2 two-level factors and 𝑚3 three-level

actors is summarized as follows.

onstruction 1 (Jones and Nachtsheim’s Construction Method, 2013).
tep 1. Let 𝑚 denote the size of the smallest conference matrix 𝐶 satisfying 𝑚 ≥ 𝑚2 +𝑚3. Take the first 𝑚3 +𝑚2 columns of 𝐶, and change
he 0’s in the last 𝑚2 columns to 1’s or −1’s. We denote the resulting matrix as 𝐶∗;
tep 2. Create

𝐷JN =

⎛

⎜

⎜

⎜

⎜

⎝

𝐶∗

−𝐶∗

𝑏′

−𝑏′

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

here 𝑏 = (𝑏1,… , 𝑏𝑚3
, 𝑏𝑚3+1,… , 𝑏𝑚3+𝑚2

)′ with 𝑏𝑖 = 0 for 𝑖 = 1, 2,… , 𝑚3 and 𝑏𝑖 = 1 or −1 for 𝑖 = 𝑚3 + 1, 𝑚3 + 2,… , 𝑚3 + 𝑚2. Here, 𝐷JN is
screening design with 𝑚3 three-level factors (first 𝑚3 columns) and 𝑚2 two-level factors (last 𝑚2 columns);
tep 3. There are 2𝑚2 choices of 𝐶∗ and 2𝑚2 choices of 𝑏; thus, there are 22𝑚2 choices for 𝐷JN . Take the optimal 𝐷JN under the D-optimal
r A-optimal criteria.

Conference matrices used in 𝐷JN are given in Xiao et al. (2012) and Schoen et al. (2019). The optimal designs generated by
onstruction 1 can be obtained by a searching algorithm. However, such a searching is time consuming for large 𝑚2. Here, the
erformances of a design are reported (mainly via D- and A-efficiencies). Specifically, Deff = |𝑋′𝑋|

1∕𝑝∕𝑛 (Draper and Lin, 1990),
nd Aeff = (𝑝∕𝑛)

/

tr(𝑋′𝑋)−1, where 𝑋 is the model matrix, 𝑝 is the number of parameters in the model, and 𝑛 is the run size of
′ −1
2

esign. Note that if a matrix 𝑋 has only 0’s and ±1’s, we have 𝑡𝑟(𝑋 𝑋) ≥ 𝑝∕𝑛.
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Two constructions of mixed-level screening designs, via skew-symmetric conference matrices, are proposed. These two construc-
ion methods do not require computer search, and the resulting designs achieve the lower bound given in Propositions 1 and 2
elow. Furthermore, these mixed-level screening designs have high D- and A-efficiencies.

roposition 1. For a 𝐷JN generated by Construction 1, the absolute correlation between two two-level design columns is greater than or
qual to 1∕(𝑚 + 1).

We use 𝐽2 defined in Eq. (4) below, proposed by Deng and Tang (1999), to measure the correlations among the design columns
f 𝐷JN = (𝑑𝑖𝑗 )(2𝑚+2)×(𝑚3+𝑚2), and a smaller 𝐽2 value is preferred.

𝐽2(𝐷JN) =
∑

1≤𝑗1<𝑗2≤𝑚3+𝑚2

∣
2𝑚+2
∑

𝑖=1
𝑑𝑖𝑗1𝑑𝑖𝑗2 ∣ . (4)

Proposition 2. For a 𝐷JN generated by Construction 1, we have 𝐽2(𝐷JN) ≥ 2𝑚2𝑚3 + 𝑚2(𝑚2 − 1).

. Main results

.1. Type I mixed-level screening designs

We first present the construction of skew-symmetric conference matrices. These matrices are the main components of mixed-level
creening designs. The recursive construction steps of these conference matrices are as follows.

onstruction 2 (Construction of Skew-Symmetric Conference Matrices).

1. For 𝑘 = 1, let

𝑂1 =
(

1 1
1 −1

)

;𝐶1 =
(

0 1
−1 0

)

;

2. For 𝑘 > 1, define 𝑂𝑘 and 𝐶𝑘 as

𝑂𝑘 =
(

𝑂𝑘−1 𝑂𝑘−1
𝑂𝑘−1 −𝑂𝑘−1

)

;𝐶𝑘 =
(

𝐶𝑘−1 𝑂𝑘−1
−𝑂𝑘−1 𝐶𝑘−1

)

.

Theorem 1. The 𝐶𝑘 obtained from Construction 2 is a 2𝑘 × 2𝑘 skew-symmetric conference matrix.

We next provide a construction method for mixed-level screening designs based on the newly proposed conference matrices in
Theorem 1. The resulting designs are referred to as Type I mixed-level screening designs. The specific construction processes are as
follows.

Construction 3 (Construction of Type I Mixed-Level Screening Designs).

Step 1. Let 𝑚 denote the size of the smallest skew-symmetric conference matrix 𝐶 satisfying 𝑚 ≥ 𝑚2 + 𝑚3. Take the first 𝑚3 + 𝑚2 columns
of 𝐶, denoting 𝐶, and change the 0’s in the last 𝑚2 columns of 𝐶 to 1’s. We denote the resulting matrix as 𝐶∗;

Step 2. Create

𝐷Type I =

⎛

⎜

⎜

⎜

⎜

⎝

𝐶∗

−𝐶∗

𝑏′

−𝑏′

⎞

⎟

⎟

⎟

⎟

⎠

, (5)

here 𝑏 = (0,… , 0
⏟⏟⏟

𝑚3

, 1,… , 1
⏟⏟⏟

𝑚2

)′.

The above steps provide a convenient construction for mixed-level screening designs with 2𝑚 + 2 runs involving 𝑚2 two-level
actors and 𝑚3 three-level factors, which do not need an algorithmic search. Next, the theoretical properties of the proposed designs
re obtained below.

roposition 3. 𝐷Type I achieves the lower bounds displayed in Propositions 1 and 2.

roposition 4. The correlation of 𝐷Type I between two three-level design columns is 0, and the correlation between a three-level design
2 1∕2
3

olumn and a two-level design column is ±1∕(𝑚 − 1) .
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Proposition 3 indicates that the absolute correlation between two two-level design columns and the 𝐽2-characteristic for 𝐷Type I
re less than or equal to that of 𝐷JN. Additionally, Propositions 3 and 4 demonstrate that the correlations between two design
olumns in 𝐷Type I are either 0 or decrease to 0 as 𝑚 goes to infinity. These results guarantee that 𝐷Type I have high D-efficiencies
nd A-efficiencies.

heorem 2. For a 𝐷Type I generated by Construction 3, the first-order D-efficiency and the first-order A-efficiency have the following lower
ounds, respectively,

𝐷eff (Type I) ≥ 1 − 2
𝑚
; (6)

𝐴eff (Type I) ≥ 1 − 6
𝑚 + 1

. (7)

From (6) and (7), the lower bounds of the D- and A-efficiencies of 𝐷Type I tend to 1 as 𝑚 increases. Hence, 𝐷Type I achieves high
stimation efficiencies with large 𝑚. Table A.1 (in Appendix) exhibits the first-order efficiencies for 𝐷Type I and 𝐷JN for different
alues 𝑚2 and 𝑚3 and some other columns to be explained later. The cases with 𝑚2 > 10 are not provided, because these designs are
omputationally expensive for 𝐷JN. From Table A.1, it can be seen that the efficiencies of 𝐷Type I and 𝐷JN are basically identical.

In summary, the construction of 𝐷Type I is straightforward (without any computer search). The correlation between two two-
evel design columns and the 𝐽2 value for 𝐷Type I reach the lower bound. In addition, 𝐷Type I have excellent first-order D- and
-efficiencies.

.2. Type II mixed-level screening designs

When exploring the response surface model, (1) is under consideration. The pure-quadratic effects determine the curve of the
esponse surface in model (1). However, the correlations between two pure-quadratic effect columns are 1∕2 − 1∕(𝑚 − 1) for both
Type I and 𝐷JN (for large 𝑚, this is about 1∕2). To reduce the correlation between two pure-quadratic effect columns, we introduce
nother type of mixed-level screening design, called Type II mixed-level screening designs, which have the following form

𝐷Type II =
(

𝐶∗

−𝐶∗

)

, (8)

here 𝐶∗ is defined in Construction 3. As a result of the fold-over structure, main effects are uncorrelated with both the two-factor
nteractions and the pure-quadratic effects. The following proposition provides the correlation between two pure-quadratic effect
olumns of 𝐷Type II.

roposition 5. For a 𝐷Type II with 𝑛 = 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors, the correlation between two
ure-quadratic effect columns is −1∕(𝑚 − 1).

Proposition 5 shows that the correlation between two pure-quadratic effect columns approaches 0 as 𝑚 tends to infinity for
Type II. This also implies that 𝐷Type II is able to estimate the pure-quadratic effects more accurately than 𝐷Type I and 𝐷JN. The

orrelations for other cases are shown in Proposition 6 below.

roposition 6. For a 𝐷Type II with 𝑛 = 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors,

(i) the correlation between two two-level design columns is 0;
(ii) the correlation between two three-level design columns is 0;
(iii) the correlation between a three-level design column and a two-level design column is ±1∕(𝑚2 − 𝑚)1∕2.

Proposition 6 implies that the correlations between any two design columns in 𝐷Type II are either 0 or decrease to 0 as 𝑚 tends
o infinity.

roposition 7. Let 𝐷∗
JN be the design by deleting the last two rows of 𝐷JN in Construction 1; then, 𝐽2(𝐷∗

JN) ≥ 2𝑚3𝑚2 = 𝐽2(𝐷Type II).

Propositions 5–7 guarantee that 𝐷Type II have high D- and A-efficiencies, as presented in Theorem 3.

heorem 3. For a 𝐷Type II with 𝑛 = 2𝑚 runs involving 𝑚2 two-level factors and 𝑚3 three-level factors, the first-order D-efficiency and the
irst-order A-efficiency have the following lower bounds, respectively,

𝐷eff (Type II) ≥ 1 − 1
𝑚 − 1

; (9)

𝐴eff (Type II) ≥ 1 − 3
𝑚
. (10)

Theorem 3 provides the lower bounds of the D- and A-efficiencies of 𝐷Type II, which tends to 1 as 𝑚 increases. Table A.1 in
Appendix further illustrates that 𝐷Type II have the highest first-order D-efficiencies and A-efficiencies compared to those of 𝐷Type I
nd 𝐷 .
4

JN
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4. Further results and discussion

Skew-symmetric conference matrices play a crucial role for two types of mixed-level screening designs. However, Construction 2
rovides the skew-symmetric conference matrices of order 𝑚 = 2𝑘 only. For 𝑚 ≡ 0 (mod 4) and 𝑠 = 𝑚 − 1 is a prime power, another
onstruction for skew-symmetric conference matrices with order 𝑚 is proposed below.

Let 𝑠 be a prime power and 𝑠 ≡ 3 (mod 4), and let 𝛼0 = 0, 𝛼1,. . . ,𝛼𝑠−1 denote the elements of 𝐺𝐹 (𝑠). Define map 𝜒 on 𝐺𝐹 (𝑠) by

𝜒(𝛽) =

⎧

⎪

⎨

⎪

⎩

1, if 𝛽 = 𝛼2 for some 𝛼 ∈ 𝐺𝐹 (𝑠),
0, if 𝛽 = 0,

−1, otherwise.

The map 𝜒 has been used for constructing the Paley conference matrix by Wang et al. (2022).

Theorem 4. Suppose 𝑚 ≡ 0 (mod 4) and 𝑠 = 𝑚 − 1 is a prime power. Let 𝑄 = (𝑞𝑖𝑗 )𝑠×𝑠 with 𝑞𝑖𝑗 = 𝜒(𝛼𝑖 − 𝛼𝑗 ), for 𝑖, 𝑗 = 0,… , 𝑠 − 1. Then,

𝐶𝑚 =
(

0 −𝟏′𝑠
𝟏𝑠 𝑄

)

is a skew-symmetric conference matrix of order 𝑚, where 𝟏𝑠 is a column vector of 𝑠 ones.

The orders of skew-symmetric conference matrices of order 𝑚 ≤ 100 constructed by Theorem 4 are 𝑚 = 4, 8, 12, 20, 24, 28, 32, 44,
48, 60, 68, 72, 80, 84. The mixed-level screening designs generated by these conference matrices have the same desired properties
as those constructed in Construction 2. The generated designs have high D- and A-efficiencies; see Table A.1 in Appendix for cases
𝑚 = 12 and 𝑚 = 20.

In summary, two types of mixed-level screening designs are proposed. The proposed designs aim to achieve desirable properties,
such as low correlations between design columns, high design efficiencies (D- or A-efficiencies), and orthogonality between main
effects and two-factor interactions (as stated in the review comments). The correlation between two pure-quadratic effect columns
approaches 0 as 𝑚 tends to infinity for 𝐷Type II. This implies that 𝐷Type II provides more accurate estimates of pure-quadratic effects
compared to 𝐷Type I and 𝐷JN. Hence, if the pure-quadratic effect columns are under consideration, 𝐷Type II is preferred. In contrast
to 𝐷JN, both 𝐷Type I and 𝐷Type II are constructed without any computer search. This highlight has been repeatedly mentioned in the
review comments. However, the run size of 𝐷Type I and 𝐷Type II are limited. The issues of how to construct a mixed-level orthogonal
screening design with flexible runs is a subject of future work.
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Appendix A. Comparison of the first-order efficiencies among 𝑫Type I, 𝑫Type II and 𝑫JN

See Table A.1.

Appendix B. Proofs

To prove the conclusions, we need the following lemmas.

Lemma 1. Let 𝐴 and 𝐵 be an 𝑛 × 𝑛 real symmetric matrix, and let 𝐴𝑚 be any principal submatrix of order 𝑚 of 𝐴. Then,

(i)

𝜆min(𝐴) ≤ 𝜆(𝐴𝑚) ≤ 𝜆max(𝐴),

where 𝜆max(𝐴) and 𝜆min(𝐴) are the largest and smallest eigenvalues of 𝐴, respectively.
(ii)

𝜆min(𝐵) ≤ 𝜆𝑖(𝐴 + 𝐵) − 𝜆𝑖(𝐴) ≤ 𝜆max(𝐵), 𝑖 = 1, 2,… , 𝑛,

where 𝜆𝑖(⋅) is the 𝑖th largest eigenvalue of the corresponding matrix.
Further, if both 𝐴 and 𝐵 are positive semidefinite matrices, then
5



Statistics and Probability Letters 208 (2024) 110079B. Hu et al.

T

Table A.1
Comparison of the first-order efficiencies among 𝐷Type I, 𝐷Type II and 𝐷JN.

𝑚 𝑚2 𝑚3 𝐷Type II 𝐷Type I 𝐷JN

Runs Deff Aeff Runs Deff Aeff Runs Deff Aeff

8 1 6 16 0.892 0.878 18 0.818 0.804 18 0.818 0.804
8 2 5 16 0.899 0.876 18 0.836 0.813 18 0.836 0.813
8 3 4 16 0.910 0.882 18 0.856 0.825 18 0.856 0.824
8 4 3 16 0.925 0.895 18 0.881 0.847 18 0.882 0.849
8 5 2 16 0.945 0.919 18 0.910 0.878 18 0.910 0.878
8 6 1 16 0.970 0.952 18 0.944 0.922 18 0.944 0.922

12 1 10 24 0.924 0.917 26 0.865 0.858 26 0.865 0.858
12 2 9 24 0.926 0.914 26 0.872 0.861 26 0.872 0.861
12 3 8 24 0.929 0.914 26 0.881 0.865 26 0.880 0.864
12 4 7 24 0.933 0.915 26 0.890 0.870 26 0.890 0.871
12 5 6 24 0.939 0.919 26 0.899 0.877 26 0.900 0.877
12 6 5 24 0.946 0.926 26 0.910 0.886 26 0.910 0.887
12 7 4 24 0.954 0.935 26 0.923 0.899 26 0.923 0.899
12 8 3 24 0.963 0.947 26 0.936 0.913 26 0.936 0.913
12 9 2 24 0.974 0.961 26 0.951 0.931 26 0.951 0.931
12 10 1 24 0.986 0.979 26 0.967 0.952 26 0.967 0.952

16 1 14 32 0.942 0.938 34 0.893 0.889 34 0.893 0.889
16 2 13 32 0.942 0.936 34 0.897 0.890 34 0.897 0.890
16 3 12 32 0.944 0.934 34 0.902 0.892 34 0.902 0.892
16 4 11 32 0.945 0.934 34 0.906 0.894 34 0.906 0.894
16 5 10 32 0.948 0.935 34 0.912 0.897 34 0.912 0.897
16 6 9 32 0.951 0.937 34 0.917 0.902 34 0.917 0.902
16 7 8 32 0.954 0.939 34 0.923 0.905 34 0.923 0.905
16 8 7 32 0.958 0.943 34 0.929 0.910 34 0.929 0.910
16 9 6 32 0.962 0.948 34 0.936 0.917 34 0.936 0.917
16 10 5 32 0.967 0.953 34 0.943 0.925 34 0.943 0.924

20 1 18 40 0.953 0.950 42 0.912 0.909 42 0.912 0.909
20 2 17 40 0.953 0.949 42 0.914 0.910 42 0.914 0.910
20 3 16 40 0.954 0.947 42 0.917 0.911 42 0.917 0.911
20 4 15 40 0.955 0.947 42 0.920 0.912 42 0.920 0.912
20 5 14 40 0.956 0.946 42 0.923 0.913 42 0.923 0.913
20 6 13 40 0.957 0.947 42 0.926 0.915 42 0.928 0.916
20 7 12 40 0.959 0.948 42 0.930 0.917 42 0.930 0.917
20 8 11 40 0.961 0.949 42 0.933 0.920 42 0.934 0.920
20 9 10 40 0.963 0.951 42 0.937 0.923 42 0.937 0.923
20 10 9 40 0.965 0.953 42 0.941 0.926 42 0.941 0.927

(iii)

|𝐴 + 𝐵| ≥ |𝐴| + |𝐵|.

(iv)

0 ≤ 𝑡𝑟(𝐴𝐵) ≤ 𝜆max(𝐴) ⋅ 𝑡𝑟(𝐵).

(v) if 𝐴 − 𝐵 is positive semidefinite, then

𝑡𝑟(𝐴) ≥ 𝑡𝑟(𝐵).

(vi) if both 𝐴 and 𝐵 are positive definite, then
𝐴 − 𝐵 is positive semidefinite if and only if 𝐵−1 − 𝐴−1 is positive semidefinite.

Lemma 2 (Kantorovich-Type Inequality Marshall et al., 2009). If 0 < 𝑚 ≤ 𝑎𝑖 ≤ 𝑀 , 𝑖 = 1, 2,… , 𝑛, then
(

1
𝑛

𝑛
∑

𝑖=1
𝑎𝑖

)(

1
𝑛

𝑛
∑

𝑖=1

1
𝑎𝑖

)

≤ (𝑀 + 𝑚)2

4𝑚𝑀
.

Lemma 3. Let (𝐶3, 𝐶2)𝑚×(𝑚3+𝑚2) be a submatrix of an 𝑚×𝑚 conference matrix 𝐶, and let 𝐶∗
2 be generated by changing 0’s of 𝐶2 to ±1’s.

hen,

(i) all entries of 𝐶 ′
3𝐶

∗
2 are ±1’s, and

(ii) all nondiagonal elements of 𝐶∗
2
′𝐶∗

2 are 0’s and ±2’s.
∗

6

Further, if 𝐶 is skew-symmetric, and 𝐶2 is generated by changing 0’s of 𝐶2 to 1’s, then
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(iii) (𝐶 + 𝐼𝑚)′(𝐶 + 𝐼𝑚) = 𝑚𝐼𝑚, and
(iv) 𝐶∗

2
′𝐶∗

2 = 𝑚𝐼𝑚2
.

emma 4 (Lemma 7.10 Hedayat et al., 1999). Let 𝑠 be a prime power, and 𝑄 = (𝑞𝑖𝑗 )𝑠×𝑠 with 𝑞𝑖𝑗 = 𝜒(𝛼𝑖 − 𝛼𝑗 ), for 𝑖, 𝑗 = 0, 1,… , 𝑠−1, has
he following properties:

(i) 𝑄 is skew-symmetric if 𝑠 ≡ 3(mod 4);
(ii) 𝑄𝐽𝑠 = 𝐽𝑠𝑄 = 𝟎;
(iii) 𝑄𝑄′ = 𝑠𝐼𝑠 − 𝐽𝑠;

here 𝐽𝑠 is the 𝑠 × 𝑠 matrix of ones and 𝟎 is a matrix of zeros.

roofs of Proposition 1–Proposition 7. For any matrix 𝐷𝑛×𝑚, 𝐷′𝐷 = (𝛼𝑖𝑗 )𝑚×𝑚. Due to

𝐽2(𝐷′𝐷) =
∑

1≤𝑖<𝑗≤𝑚
|𝛼𝑖𝑗 |,

hen Propositions 1–7 can be obtained by some tedious algebra based on Lemma 3. Therefore, we omit the detailed proofs.

roof of Theorem 1. By Construction 2, we have 𝑂′
𝑘𝑂𝑘 = 2𝑘𝐼2𝑘 . Now we prove 𝐶 ′

𝑘𝑂𝑘 = 𝑂′
𝑘𝐶𝑘 by induction as the preparation of

he orthogonality of 𝐶𝑘. Clearly, 𝐶 ′
1𝑂1 = 𝑂′

1𝐶1. Suppose 𝐶 ′
𝑎𝑂𝑎 = 𝑂′

𝑎𝐶𝑎 holds for 𝑘 = 𝑎 and consider

𝐶 ′
𝑎+1𝑂𝑎+1 =

(

𝐶 ′
𝑎𝑂𝑎 − 𝑂′

𝑎𝑂𝑎 𝐶 ′
𝑎𝑂𝑎 + 𝑂′

𝑎𝑂𝑎
𝐶 ′
𝑎𝑂𝑎 + 𝑂′

𝑎𝑂𝑎 𝑂′
𝑎𝑂𝑎 − 𝐶 ′

𝑎𝑂𝑎

)

;

𝑂′
𝑎+1𝐶𝑎+1 =

(

𝑂′
𝑎𝐶𝑎 − 𝑂′

𝑎𝑂𝑎 𝑂′
𝑎𝐶𝑎 + 𝑂′

𝑎𝑂𝑎
𝑂′
𝑎𝐶𝑎 + 𝑂′

𝑎𝑂𝑎 𝑂′
𝑎𝑂𝑎 − 𝑂′

𝑎𝐶𝑎

)

.

he result 𝐶 ′
𝑘𝑂𝑘 = 𝑂′

𝑘𝐶𝑘 follows by induction.
Further, we have 𝐶 ′

1𝐶1 = 𝐼2 and

𝐶 ′
𝑘𝐶𝑘 =

(

𝐶 ′
𝑘−1 −𝑂′

𝑘−1
𝑂′
𝑘−1 𝐶 ′

𝑘−1

)(

𝐶𝑘−1 𝑂𝑘−1
−𝑂𝑘−1 𝐶𝑘−1

)

=
(

𝐶 ′
𝑘−1𝐶𝑘−1 + 𝑂′

𝑘−1𝑂𝑘−1 𝟎
𝟎 𝐶 ′

𝑘−1𝐶𝑘−1 + 𝑂′
𝑘−1𝑂𝑘−1

)

=
(

𝐶 ′
𝑘−1𝐶𝑘−1 + 2𝑘−1𝐼2𝑘−1 𝟎

𝟎 𝐶 ′
𝑘−1𝐶𝑘−1 + 2𝑘−1𝐼2𝑘−1

)

.

hen, we have 𝐶 ′
𝑘𝐶𝑘 = (2𝑘−1)𝐼2𝑘 by induction. Continuing to use induction, we can obtain 𝐶𝑘+𝐶 ′

𝑘 = 𝟎, that is, 𝐶𝑘 is a skew-symmetric
atrix. Therefore, we complete the proof.

roof of Theorem 2. 𝐷Type I has 2𝑚+2 rows and 𝑚2 +𝑚3 columns (𝑚2 +𝑚3 ≤ 𝑚), and its model matrix 𝑋 for the first-order model
2) can be expressed as

𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

𝟏𝑚 𝐶∗
3 𝐶∗

2
𝟏𝑚 −𝐶∗

3 −𝐶∗
2

1 𝟎′𝑚3
𝟏′𝑚2

1 𝟎′𝑚3
−𝟏′𝑚2

⎞

⎟

⎟

⎟

⎟

⎠

,

here 𝐶∗ = (𝐶∗
3 , 𝐶

∗
2 ) is generated by Construction 3. Then, we have

𝑋′𝑋 = 2

⎛

⎜

⎜

⎜

⎝

𝑚 + 1 𝟎′𝑚3
𝟎′𝑚2

𝟎𝑚3
𝐶∗
3
′𝐶∗

3 𝐶∗
3
′𝐶∗

2
𝟎𝑚2

𝐶∗
2
′𝐶∗

3 𝐶∗
2
′𝐶∗

2 + 𝐽𝑚2

⎞

⎟

⎟

⎟

⎠

= 2

⎛

⎜

⎜

⎜

⎝

𝑚 + 1 𝟎′𝑚3
𝟎′𝑚2

𝟎𝑚3
(𝑚 − 1)𝐼𝑚3

𝐶∗
3
′𝐶∗

2
𝟎𝑚2

𝐶∗
2
′𝐶∗

3 𝑚𝐼𝑚2
+ 𝐽𝑚2

⎞

⎟

⎟

⎟

⎠

. (B.1)

By calculation, we have

|𝑋′𝑋| = 2𝑚2+𝑚3+1(𝑚 + 1)(𝑚 − 1)𝑚3
|

|

|

|

𝑚𝐼𝑚2
+ 𝐽𝑚2

− 1
𝑚 − 1

𝐶∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2
|

|

|

|

.

Let 𝐺1 be the 𝑚 × 𝑚2 matrix of the last 𝑚2 columns of 𝐶 in Construction 3; then, 𝐶∗
2 can be written as 𝐶∗

2 = 𝐺1 + 𝐺2, where
ach column of 𝐺 consists of only one 1 and 𝑚 − 1 0’s. Based on the column orthogonality of the conference matrix, we have
7

2
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1
𝑚−1𝐶

∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2 = (𝐺1 + 𝐺2)′𝐶∗
3 (𝐶

∗
3
′𝐶∗

3 )
−1𝐶∗

3
′(𝐺1 + 𝐺2) = 𝐺′

2𝐶
∗
3 (𝐶

∗
3
′𝐶∗

3 )
−1𝐶∗

3
′𝐺2. Using Lemma 1(i), we obtain

0 = 𝜆min

(

𝐶∗
3
(

𝐶∗
3
′𝐶∗

3
)−1 𝐶∗

3
′
)

≤ 𝜆
( 1
𝑚 − 1

𝐶∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2

)

≤ 𝜆max

(

𝐶∗
3
(

𝐶∗
3
′𝐶∗

3
)−1 𝐶∗

3
′
)

= 1. (B.2)

Let 𝑄 = 𝑚𝐼𝑚2
− 1

𝑚−1𝐶
∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2 . Combining (B.2) and Lemma 1 (ii), we have 𝑚 − 1 ≤ 𝜆(𝑄) ≤ 𝑚. By applying Lemma 1 (iii), we
ave

|𝑋′𝑋| ≥ 2𝑚2+𝑚3+1(𝑚 + 1)(𝑚 − 1)𝑚3
(

|𝑄| + |

|

|

𝐽𝑚2
|

|

|

)

≥ 2𝑚2+𝑚3+1(𝑚 + 1)(𝑚 − 1)𝑚3
|𝑄| .

By Lemma 2 and 𝑡𝑟 (𝑄) = 𝑚2
(

𝑚 − 𝑚3∕ (𝑚 − 1)
)

, we have

|𝑄| =
𝑚2
∏

𝑖=1
𝜆𝑖(𝑄) ≥

⎛

⎜

⎜

⎜

⎝

𝑚2
1

𝜆1(𝑄) +⋯ + 1
𝜆𝑚2 (𝑄)

⎞

⎟

⎟

⎟

⎠

𝑚2

≥

(

4𝑚
(

𝑚2 − 𝑚 − 𝑚3
)

(2𝑚 − 1)2

)𝑚2

. (B.3)

hus, we have

𝐷eff (𝐷Type I) ≥
(

1 − 2
𝑚 + 1

)

𝑚3
𝑚3+𝑚2+1

(

1 −
4𝑚2 − 3𝑚 + 4𝑚𝑚3 + 1

(𝑚 + 1)(2𝑚 − 1)2

)

𝑚2
𝑚3+𝑚2+1

≥
(

1 − 2
𝑚 + 1

)

𝑚3
𝑚3+𝑚2+1

(

1 − 2
𝑚

)

𝑚2
𝑚3+𝑚2+1

≥ 1 − 2
𝑚
.

Hence, we obtain the lower bound of the first-order D-efficiency for 𝐷Type I.
Next, we turn to the first-order A-efficiency for 𝐷Type I. From (B.1), we have

𝑡𝑟(𝑋′𝑋)−1 = 1∕(2𝑚 + 2) + 1∕2 ⋅ 𝑡𝑟(𝐴−1), (B.4)

here

𝐴 =
(

(𝑚 − 1) 𝐼𝑚3
𝐶∗
3
′𝐶∗

2
𝐶∗
2
′𝐶∗

3 𝑚𝐼𝑚2
+ 𝐽𝑚2

)

,

𝐴−1 =

⎛

⎜

⎜

⎜

⎝

1
𝑚−1 𝐼𝑚3

+ 1
(𝑚−1)2

𝐶∗
3
′𝐶∗

2𝐵
−1𝐶∗

2
′𝐶∗

3 ∗

∗ 𝐵−1

⎞

⎟

⎟

⎟

⎠

,

𝐵 = 𝑄 + 𝐽𝑚2
.

Then, we obtain

𝑡𝑟
(

𝐴−1)

=
𝑚3

𝑚 − 1
+ 1

(𝑚 − 1)2
⋅ 𝑡𝑟

(

𝐵−1𝐶∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2
)

+ 𝑡𝑟
(

𝐵−1)

≤
𝑚3

𝑚 − 1
+ 1

(𝑚 − 1)2
⋅ 𝑡𝑟

(

𝐵−1) 𝜆max(𝐶∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2 ) + 𝑡𝑟
(

𝐵−1) (Lemma 1 (iv))

≤
𝑚3

𝑚 − 1
+ 𝑚

𝑚 − 1
⋅ 𝑡𝑟

(

𝐵−1) (refer to (B.2))

≤
𝑚3

𝑚 − 1
+ 𝑚

𝑚 − 1
⋅ 𝑡𝑟

(

𝑄−1) (Lemma 1 (v) and (vi))

≤
𝑚3 +

𝑚2(2𝑚 − 1)2
(

2
) (refer to (B.3)).

(B.5)
8

𝑚 − 1 4 (𝑚 − 1) 𝑚 − 𝑚 − 𝑚3
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Thus, we have

𝐴eff (Type I)

≥ 1 −

(

4𝑚3 + 1
)

𝑚2 + 8
(

𝑚2 − 𝑚 − 𝑚3
)

𝑚3∕ (𝑚 − 1) + 2 (2𝑚 − 1)2 𝑚2∕ (𝑚 − 1)

4
(

𝑚2 − 𝑚 − 𝑚3
)

(

1 + 𝑚3

(

1 + 2
𝑚−1

))

+ (2𝑚 − 1)2 𝑚2

(

1 + 2
𝑚−1

)

≥ 1 −
8𝑚3∕𝑚2

(

𝑚2 − 𝑚 − 𝑚3
)

+ 8𝑚2 − 7𝑚 + 4𝑚𝑚3 − 4𝑚3 + 1

(𝑚 + 1) (2𝑚 − 1)2
(

𝑜𝑟 ≥ 1 −
8
(

𝑚2 − 𝑚 − 𝑚3
)

+ 𝑚2∕𝑚3
(

8𝑚2 − 7𝑚 + 4𝑚𝑚3 − 4𝑚3 + 1
)

4
(

𝑚2 − 𝑚 − 𝑚3
)

(𝑚 + 1)

)

≥ 1 − 6
𝑚 + 1

.

Therefore, we complete the proof.

Proof of Theorem 3. 𝐷Type II has 2𝑚 rows and 𝑚2 + 𝑚3 columns (𝑚2 + 𝑚3 ≤ 𝑚), and its model matrix 𝑋 for the first-order model
(2) can be expressed as

𝑋 =
(

𝟏𝑚 𝐶∗
3 𝐶∗

2
𝟏𝑚 −𝐶∗

3 −𝐶∗
2

)

.

where 𝐶∗ = (𝐶∗
3 , 𝐶

∗
2 ) is generated by Construction 3. Then, we have

𝑋′𝑋 = 2

⎛

⎜

⎜

⎜

⎝

𝑚 𝟎′𝑚3
𝟎′𝑚2

𝟎𝑚3
𝐶∗
3
′𝐶∗

3 𝐶∗
3
′𝐶∗

2
𝟎𝑚2

𝐶∗
2
′𝐶∗

3 𝐶∗
2
′𝐶∗

2

⎞

⎟

⎟

⎟

⎠

= 2

⎛

⎜

⎜

⎜

⎝

𝑚 000′𝑚3
000′𝑚2

000𝑚3
(𝑚 − 1)𝐼𝑚3

𝐶∗
3
′𝐶∗

2
000𝑚2

𝐶∗
2
′𝐶∗

3 𝑚𝐼𝑚2

⎞

⎟

⎟

⎟

⎠

. (B.6)

By calculation, we have

|𝑋′𝑋| = 2𝑚2+𝑚3+1𝑚(𝑚 − 1)𝑚3
|

|

|

|

𝑚𝐼𝑚2
− 1

𝑚 − 1
𝐶∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2
|

|

|

|

.

Employing 𝑄 = 𝑚𝐼𝑚2
− 1

𝑚−1𝐶
∗
2
′𝐶∗

3𝐶
∗
3
′𝐶∗

2 and |𝑄| ≥
(

4𝑚
(

𝑚2−𝑚−𝑚3
)

(2𝑚−1)2

)𝑚2
, we have

𝐷eff (𝐷Type II) ≥
(

1 − 1
𝑚

)

𝑚3
𝑚3+𝑚2+1

(

1 −
4𝑚3 + 1
(2𝑚 − 1)2

)

𝑚2
𝑚3+𝑚2+1

≥
(

1 − 1
𝑚

)

𝑚3
𝑚3+𝑚2+1

(

1 − 1
𝑚 − 1

)

𝑚2
𝑚3+𝑚2+1

≥ 1 − 1
𝑚 − 1

.

herefore, we obtain the lower bound of the first-order D-efficiency for 𝐷Type II.
Next, we discuss the first-order A-efficiency for 𝐷Type II. By (B.6), we have

𝑡𝑟(𝑋′𝑋)−1 = 1∕(2 𝑚) + 1∕2 ⋅ 𝑡𝑟(𝐴−1),

here

𝐴 =
(

(𝑚 − 1)𝐼𝑚3
𝐶∗
3
′𝐶∗

2
𝐶∗
2
′𝐶∗

3 𝑚𝐼𝑚2

)

, 𝐴−1 =

( 1
𝑚−1

𝐼𝑚3
+ 1

(𝑚−1)2
𝐶∗
3
′𝐶∗

2𝑄
−1𝐶∗

2
′𝐶∗

3 ∗

∗ 𝑄−1

)

.

Then, similar to (B.5), we have

𝑡𝑟
(

𝐴−1) ≤
𝑚3 +

𝑚2(2𝑚 − 1)2
(

2
) .
9

𝑚 − 1 4 (𝑚 − 1) 𝑚 − 𝑚 − 𝑚3
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Thus, we have

𝐴eff (Type II)

≥ 1 −
4
(

𝑚2 − 𝑚 − 𝑚3
)

𝑚3∕ (𝑚 − 1) + 𝑚2
(

4𝑚3 + 1 + (2𝑚 − 1)2 ∕ (𝑚 − 1)
)

4
(

𝑚2 − 𝑚 − 𝑚3
)

(

1 + 𝑚3

(

1 + 1
𝑚−1

))

+ (2𝑚 − 1)2 𝑚2

(

1 + 1
𝑚−1

)

≥ 1 −
4
(

𝑚2 − 𝑚 − 𝑚3
)

𝑚3∕𝑚2 + 4𝑚2 − 3𝑚 + 4𝑚𝑚3 − 4𝑚3

𝑚 (2𝑚 − 1)2
(

𝑜𝑟 ≥ 1 −
4
(

𝑚2 − 𝑚 − 𝑚3
)

+ 𝑚2∕𝑚3
(

4𝑚2 − 3𝑚 + 4𝑚𝑚3 − 4𝑚3
)

4𝑚
(

𝑚2 − 𝑚 − 𝑚3
)

)

≥ 1 − 3
𝑚
.

Therefore, we complete the proof.

Proof of Theorem 4. By Lemma 4 and some algebraic calculations, we can obtain Theorem 4 directly, so we omit the detailed
proofs.
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